Moduli Stacks of Serre Stable Representations in Tilting Theory
نویسنده
چکیده
We introduce a new moduli stack, called the Serre stable moduli stack, which corresponds to studying families of point objects in an abelian category with a Serre functor. This allows us in particular, to re-interpret the classical derived equivalence between most concealed-canonical algebras and weighted projective lines by showing they are induced by the universal sheaf on the Serre stable moduli stack. We explain why the method works by showing that the Serre stable moduli stack is the tautological moduli problem that allows one to recover certain nice stacks such as weighted projective lines from their moduli of sheaves. As a result, this new stack should be of interest in both representation theory and algebraic geometry.
منابع مشابه
A Theory of the Invariants Obtained from the Moduli Stacks of Stable Objects on a Smooth Polarized Surface
Let X be a smooth polarized algebraic surface over the compex number field. We discuss the invariants obtained from the moduli stacks of semistable sheaves of arbitrary ranks on X. For that purpose, we construct the virtual fundamental classes of some moduli stacks, and we show the transition formula of the integrals over the moduli stacks of the δ-stable Bradlow pairs for the variation of the ...
متن کاملNotes on algebraic stacks
1 Moduli problems, spaces, and stacks. Vector bundles and K-theory 3 1.1 Some category theory . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Back to moduli spaces . . . . . . . . . . . . . . . . . . . . . . 4 1.3 The way out of the problem . . . . . . . . . . . . . . . . . . . 7 1.4 Algebraic stacks and moduli of vector bundles . . . . . . . . . 7 1.5 K-theory of schemes . . . . . . . . . . ...
متن کاملEquivariant geometry and the cohomology of the moduli space of curves
In this chapter we give a categorical definition of the integral cohomology ring of a stack. For quotient stacks [X/G] the categorical cohomology ring may be identified with the equivariant cohomology H∗ G(X). Identifying the stack cohomology ring with equivariant cohomology allows us to prove that the cohomology ring of a quotient Deligne-Mumford stack is rationally isomorphic to the cohomolog...
متن کاملSelf-dual Quiver Moduli and Orientifold Donaldson-thomas Invariants
Motivated by the counting of BPS states in string theory with orientifolds, we study moduli spaces of self-dual representations of a quiver with contravariant involution. We develop Hall module techniques to compute the number of points over finite fields of moduli stacks of semistable self-dual representations. Wall-crossing formulas relating these counts for different choices of stability par...
متن کاملThe Tautological Rings of the Moduli Spaces of Stable Maps to Flag Varieties
We show that the rational cohomology classes on the moduli spaces of genus zero stable maps to SL flag varieties are tautological. The Kontsevich moduli stacks of stable maps arise as generalizations of the classical Deligne-Mumford spaces of stable curves. Their intersection theory has been intensively studied in the last decade in relation to enumerative geometry and string theory. Partial re...
متن کامل